Oral HPV infection and the changing epidemiology in head and neck cancer

Daniel Beachler, PhD, MHS
Johns Hopkins School of Public Health
Department of Epidemiology

Southwest Region’s Dental PBRN Meeting
Feb. 21st 2014
Disclosures

- None
Intro: Head and Neck Cancer in the U.S.

- 52,610 new HNC cases each year
 - 8th among males
 - 14th among females
- 5-year survival: 61%

- Traditional risk factors:
 - Tobacco and alcohol

- Newly defined risk factor:
 - HPV infection
Topics for today

• HPV & role in cancer
• Burden and trends of HNC
• Patient characteristics of HPV+ and HPV- HNC
• Oral HPV infection – acquisition and persistence
• Prevention
 – Vaccination and Screening
Human Papillomavirus

- Small, circular DNA virus
- Infects basal cells in squamous epithelium
- >100 different types
 - Cutaneous or mucosal
 - High-risk and low-risk types
- Commonly found in the anogenital region
 - Necessary cause of cervical cancer
“High-risk” HPV types have established carcinogenicity

<table>
<thead>
<tr>
<th>Group</th>
<th>HPV types</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha HPV types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>Most potent HPV type, known to cause cancer at several sites</td>
</tr>
<tr>
<td>1</td>
<td>18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59</td>
<td>Sufficient evidence for cervical cancer</td>
</tr>
<tr>
<td>2A</td>
<td>68</td>
<td>Limited evidence in humans and strong mechanistic evidence for cervical cancer</td>
</tr>
<tr>
<td>2B</td>
<td>26, 53, 66, 67, 70, 73, 82</td>
<td>Limited evidence in humans for cervical cancer</td>
</tr>
<tr>
<td>2B</td>
<td>30, 34, 69, 85, 97</td>
<td>Classified by phylogenetic analogy to HPV types with sufficient or limited evidence in humans</td>
</tr>
<tr>
<td>3</td>
<td>6, 11</td>
<td></td>
</tr>
<tr>
<td>Beta HPV types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>5 and 8</td>
<td>Limited evidence for skin cancer in patients with epidermodyplasia verruciformis</td>
</tr>
<tr>
<td>3</td>
<td>Other beta and gamma types</td>
<td>...</td>
</tr>
</tbody>
</table>
HOW DO WE KNOW HPV CAUSES SOME HNC?
HPV and HNSCC
Molecular evidence

- localized to nuclei in tumor cells
- transcriptionally active
- integrated
- found in high copy number (clonal)
- oncoprotein (E6/E7) expression
- not found in surrounding tissue
- HPV16 DNA localized in tumor of 50-80% of OPSCC

Gillison et al. JNCI 2000; D'Souza et al. NEJM 2008
Epidemiologic Evidence: HPV Biomarkers and OP cancer

<table>
<thead>
<tr>
<th>Measure of HPV Exposure or Disease</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted*</td>
</tr>
<tr>
<td>HPV-16 L1 serologic status</td>
<td></td>
</tr>
<tr>
<td>Seronegative</td>
<td>1.00</td>
</tr>
<tr>
<td>Seropositive</td>
<td>32.2 (14.6–71.3)</td>
</tr>
<tr>
<td>Oral HPV-16 infection†</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>1.00</td>
</tr>
<tr>
<td>Positive</td>
<td>14.6 (6.3–36.6)</td>
</tr>
<tr>
<td>Any oral HPV infection‡</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>1.00</td>
</tr>
<tr>
<td>Positive</td>
<td>12.3 (5.4–26.4)</td>
</tr>
<tr>
<td>HPV-16 E6 or E7 serologic status</td>
<td></td>
</tr>
<tr>
<td>Seronegative for E6 and E7</td>
<td>1.00</td>
</tr>
<tr>
<td>Seropositive for E6 or E7</td>
<td>58.4 (24.2–138.3)</td>
</tr>
</tbody>
</table>

Epidemiologic Evidence:
Sexual Behavior and OP Cancer

<table>
<thead>
<tr>
<th>Sexual Behavior</th>
<th>Adjusted Odds Ratio (95% CI)†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Patients</td>
</tr>
<tr>
<td>Lifetime no. of oral-sex partners</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1–5</td>
<td>1.9 (0.8–4.5)</td>
</tr>
<tr>
<td>≥6</td>
<td>3.4 (1.3–8.8)</td>
</tr>
</tbody>
</table>

Prospective evaluation of HPV and head and neck cancer

292 HNC incident & 1568 controls nested in Nordic cohort, tested for HPV antibodies at baseline

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>% cases HPV Ab+</th>
<th>% controls HPV Ab+</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oropharynx</td>
<td>26</td>
<td>38%</td>
<td>10%</td>
</tr>
<tr>
<td>Tongue</td>
<td>57</td>
<td>16%</td>
<td>7%</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>19</td>
<td>11%</td>
<td>2%</td>
</tr>
<tr>
<td>Floor of mouth</td>
<td>23</td>
<td>0%</td>
<td>12%</td>
</tr>
<tr>
<td>Larynx</td>
<td>76</td>
<td>12%</td>
<td>5%</td>
</tr>
<tr>
<td>ALL HNC sites</td>
<td>292</td>
<td>12%</td>
<td>7%</td>
</tr>
</tbody>
</table>
Etiologic role of HPV in OP cancer clear

- Conclusive evidence showing
 - Consistency
 - Temporal relationship
 - Dose-response (with increasing # sex partners)
 - Biological rationale
 - Molecular evidence

- “There is sufficient evidence in humans for the carcinogenicity of HPV16 in the oropharynx”
BURDEN AND THE CHANGING TRENDS OF HNC
Worldwide Incidence of HPV-associated cancers

![Bar chart showing the annual number of HPV-associated cancer cases for different body parts: Cervix, Anus, Vulva/vagina, Penis, Mouth, Oropharynx. The chart indicates a significant number of cases for the Cervix, with smaller numbers for other locations.]

Number of cases per year

Cancer Site

Modified from: CDC, SEER, Parkin 2006, Chaturvedi 2011
Incidence of HPV-Associated Cancer in US

Number of new HPV-associated cancers in US in 2009 by gender & site

Men (N = 13,446)

- OP: 78.2% (n = 10,511)
- Anal: 14.4% (n = 1,934)
- Penis: 7.4% (n = 1,001)

Women (N = 21,342)

- OP: 11.6% (n = 2,478)
- Anal: 16.4% (n = 3,500)
- Cervix: 53.4% (n = 11,388)
- Vagina: 3.4% (n = 734)

Increasing OPC incidence is caused by HPV:

U.S (SEER, Chaturvedi, JCO 2011)

Sweden; Nasman Int J Cancer. 2009
Increasing % of OPC with HPV DNA: Summary of literature
HNC cancer incidence by tumor site

Will OPC incidence continue to increase?
HNC Cancer Trends 1973-2006, men increase only among younger men in US

A) Oropharyngeal Cancer increasing in < 55 yr olds

B) Other HNC sites decreasing

HPV-POSITIVE AND HPV-NEGATIVE HNC

different etiologies,
different patient populations,
different survival
Who is at increased risk of HPV+OPC?

1. Men
2. Risk increases with age
3. HIV-infected
4. Husbands of women with cervical cancer
 - ~3-fold increased risk of tonsillar cancer
 - Unclear in spouse of HPV+ OPSCC at increased risk
5. Individuals with hx of anogenital SCC
 - 4-6 fold increase risk of tonsillar cancer

Patient Characteristics Differ
HNC Case Series

- Different HPV+ and HPV- Patient Populations

- HPV+ cases more likely to be:
 - nonsmokers, nondrinkers
 - younger age
 - White
 - higher SES
 - palatine and lingual tonsils
 - poorly differentiated (basaloid)
Risk Factors for HPV-negative HNC Case-Control

Gillison et al. JNCI 2008: 407
Risk Factors for HPV-positive HNC
Case-Control

Gillison et al. JNCI 2008: 407
Warning: association does not imply prediction

- >50% of HPV+ OP cases have ≤ 5 lifetime oral sex partners
 - Oral HPV is a fairly common infection
- HPV+ OP cases can also commonly occur among smokers
 - ~20% of HPV+ OP cancers are nonsmokers/nondrinkers
- Demographics, tobacco, alcohol & sexual behavior had only moderate predictive ability for HPV status
 - OP: PPV=55%, NPV=65%
 → Many false positive and negative predictions
- Tumor testing is necessary to identify HPV status of cancer
Survival Differs by Tumor HPV Status

- Eastern Cooperative Onc. Group (ECOG) - 96 stage III or IV oropharynx or larynx cancers

<table>
<thead>
<tr>
<th></th>
<th>HPV+</th>
<th>HPV-</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Responsive to treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>induction chemotherapy</td>
<td>82%</td>
<td>55%</td>
<td>0.01</td>
</tr>
<tr>
<td>chemo-radiation treatment</td>
<td>84%</td>
<td>57%</td>
<td>0.007</td>
</tr>
<tr>
<td>2 year survival</td>
<td>87%</td>
<td>62%</td>
<td>0.008</td>
</tr>
<tr>
<td>Disease progression</td>
<td>13%</td>
<td>34%</td>
<td>0.02</td>
</tr>
<tr>
<td>Death</td>
<td>18%</td>
<td>41%</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Fakhry, C. et al. JNCI 2008:261-269
Survival Differs: Tobacco & HPV

HPV and tobacco predict survival

Ang et al. NEJM 2010

- HPV+ <10pkyr: 93%
- HPV+ ≥10pkyr & HPV- <10pkyr: 71%
- HPV- ≥10pkyr: 46%

3 yr survival
HNC Treatment Complications

- HNC treatments are *currently* similar to HPV+ and HPV- HNC: surgery, chemotherapy, radiation therapy
- Complications are common:
 - Difficulty swallowing/speaking
 - Change in taste
 - Decreased saliva production
 - Osteoradionecrosis (ORN)
 - Thyroid problems
 - Infection
 - Decreased neck mobility
 - Concerns regarding cognitive function
ORAL HPV INFECTION-PREVALENCE, ACQUISITION & PERSISTENCE
Natural history of HPV: Cervical cancer model of progression

Co-factors:
• Smoking
• Immunosuppression
• Long term oral contraceptive use
Oral HPV prevalence among the US general population:

- Any type = 6.9%
- High risk = 3.7%
- HPV16 = 1.0%
Oral HPV Prevalence by NHANES: Men

Men, any HPV infection

HPV Prevalence, %

Age, y

Unadjusted
--- 95% CI

Adjusted

Gillison, Chaturvedi. JAMA 2012
Oral HPV Prevalence by age
NHANES: Women

Women, any HPV infection

- Unadjusted
- 95% CI
- Adjusted

Gillison, Chaturvedi. JAMA 2012
Oral HPV Acquisition

- Incidence approximately 5-10x lower than genital HPV infection in females and males1-5

<table>
<thead>
<tr>
<th>Study population</th>
<th>Country</th>
<th>N</th>
<th>Incidence rate/1000 person-months</th>
</tr>
</thead>
<tbody>
<tr>
<td>College students (Gillison1)</td>
<td>US</td>
<td>1000</td>
<td>5.7</td>
</tr>
<tr>
<td>Adult men (Kreimer2)</td>
<td>3 countries</td>
<td>1626</td>
<td>5.7</td>
</tr>
<tr>
<td>Young adults in STD Clinic (D’Souza3)</td>
<td>US</td>
<td>550</td>
<td>26</td>
</tr>
<tr>
<td>HIV+ adults (Beachler4)</td>
<td>US</td>
<td>404</td>
<td>31</td>
</tr>
</tbody>
</table>

1Pickard Gillison et al. STD 2012: 559-66. 2Kreimer et al. Lancet 2013. 3DSouza unpublished 4Beachler et al. JID 2013; 121:143 5Giuliano, Lancet 2011
Cumulative Oral HPV Incidence in a high risk population

p-trend < 0.001

Percentage of participants

Months since study entry

HIV-uninfected
HIV-infected CD4 >= 500
HIV-infected CD4: 200-499
HIV-infected CD4 < 200

Beachler et al, Submitted for Publication
Factors associated with increased oral incidence

Potential Transmitters:
- Performing oral sex1,2, particularly on a woman1,3
- Autoinoculation4
- Deep (French) kissing2
- Some infections may be latent and re-activated1,3

Other potential risk factors:
- HIV-infection and recent immunosuppression1
- Smoking5
- Single status5
- No history of tonsillectomy1

Persistence of incident oral HPV infections in middle age men

Any HPV (Clearance)

Cumulative Probability of Infection

Number at Risk

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
</tr>
</tbody>
</table>

Kreimer/Pierce-Campbell et al, Lancet 2013
Persistence of Oral HPV in high risk HIV+ and HIV- individuals

Incident Oral HPV, One Negative

HR=0.96 (0.70-1.3)
p=0.80
Oral HPV Persistence

– Oral HPV is most often transient
 • The rate of oral HPV clearance may be similar\(^1\) or even higher\(^2\) compared to anogenital HPV clearance

Factors associated with increased oral persistence
– Cigarette smoking\(^3,4\)
– Older age\(^3,5\)
– Male gender\(^3\)
HPV-ASSOCIATED HNC PREVENTION
HNC Prevention Options

– Primary Prevention – Behavior Change
 • Limiting number of sexual partners
 • Smoking cessation
– Prophylactic HPV vaccination
– Screening

¹Fakhry CPR, 2011, ²Denny Vaccine 2012
Prophylactic HPV vaccination

- Two prophylactic vaccines on market – Gardasil (6/11/16/18) and Cervarix (16/18)
 - Likely to protect against oral HPV acquisition\(^1\)

- Currently recommended for both boys and girls aged 9-26 by the CDC’s Advisory Committee on Immunization Practices (ACIP)
 - Recommended age: 11-12
 - 33% of girls and 7% of boys followed current recommendations (3 doses) in 2012\(^2\)

- Current trials exploring long-term immunogenicity and efficacy against oral HPV in various groups
 - Older individuals - likely less benefit considering previous exposure
 - Evidence of oral HPV acquisition at older ages suggests potential for a small benefit in older populations

\(^1\) Herrero, Plos One 2013, \(^2\) CDC MMWR 2013
Screening – Can we replicate the success seen with Cervical Cancer?

Wright TC NEJM 2003
Clinical, Pathological, and Molecular Progression of Oral Cavity Cancer

A

Benign squamous hyperplasia
Dysplasia
Carcinoma in situ
Dysplasia
Carcinoma
Dysplasia

B

Normal mucosa
Hyperplasia
Dysplasia
Carcinoma in situ
Carcinoma

C

9p21 LOH
p16 inactivation
3p21, 17p13 LOH
p53 mutation
13q21, 14q32 LOH
Cyclin D1 amplification
6p, 8, 4q27, 10q23 LOH
pTEN inactivation
Difficulties in Screening – Oropharyngeal Cancer

• Difficulty identifying precancerous lesion
 – Cancer often originates in the base of tongue or in the tonsillar crypt
 – Anatomic differences in cervical and tonsillar mucosa affect the ability of the cytobrush to collect premalignant or malignant epithelial cells\(^1\)

• Relatively modest burden of disease
 – Very high specificity need for reasonable PPV\(^2\)
 – Randomized trial would be difficult to conduct
 – Limit to higher risk groups? – harder to identify

1Lingen M W Cancer Prev Res 2011, 2 Castle PE JCO 2014
Screening possibilities for HPV-related HNC

Options:

• Visual detection
 – Difficult due to location/size of oropharyngeal cancer

• Oral Pap smear
 – HPV detection was not associated with cytological abnormalities among a high risk population in recent study
 – Limitation in sampling the relevant tonsillar crypt epithelium (brush biopsy not sufficient)

• Oral HPV (16) DNA
 – Low specificity
 – Not recommended by medical and dental organizations

• Other possibilities
 – HPV16 viral load, antibodies to HPV16 E6/E7 oncoproteins potential candidates, advanced imaging/ultrasound – need further research (PBRN collaboration)

Oral Cancer Screening Study w. the PBRN

iPad for informed consent and oral HPV risk factors survey

Not selected by web-app
- Lower deciles of risk
- 641 (64.1%) subjects

End of Study

Selected by web-app
- Top deciles of risk
- 359 (35.9%) subjects

Oral rinse sample

High-risk HPV negative
- 334 (33.4%) subjects

Notification of results

End of Study

High-risk HPV positive
- 25 (2.5%) subjects

Notification of high risk

Telephone informed consent

- Blood Sample
- Oral Cancer Screening
- Demographic-Behavioral Survey
- Repeat Oral Rinse Sample

Courtesy of Maura Gillison
Conclusion

• HPV is an a distinct etiologic factor of head and neck cancer

• The incidence of HPV-positive HNC is rapidly increasing in the high income countries whereas HPV-negative HNC is declining

• Oral HPV infection is fairly commonly acquired, but usually these infections clear or are controlled within 1-2 years

• New potential avenues for primary and secondary prevention of HNC
Acknowledgments

• Gypsyamber D’Souza, Carole Fakhry – Hopkins

• Maura Gillison – Ohio State
 – Working with PBRN in developing a oral cancer screening study - “HPV Screening in Dental Offices and Oral Cancer Prevention”
Thank you

Questions?